💻 :brain: Registrations will open soon for the 2021 edition! :brain: 💻:

fMRIPrep 101 - Pre-processing fMRI data and extracting connectivity matrices

By Frederic St-Onge
Published on June 12, 2020

"This project aimed to understand how to pre-process fMRI data using fMRIPrep. Through this learning experience, a tutorial was created."

Project definition

Background

Having little experience with neuroimaging and my PhD thesis using fMRI, I wanted to be able to start from raw data (in BIDS format) and learn how to process the data until I obtain derivatives (i.e. connectivity matrices). Based on the current PhD project that I am working on, using various atlases leads to varying results. As such, I wanted to extract connectivity matrices from pre-processed time-series using Nilearn, which comes pre-loaded with several atlases of interest. Finally, as most of my work will involve large cohorts (which might not be feasible to do on a personnal computer), I wanted to be able to realize these analyses on a HPC, where ressources can be used appropriatly. Please note that more information on the project is available on Github.

Tools

The project used the following tools: * Docker (for bids-validator and fMRIPrep) * Bids-validator (to validate bids) * fMRIPrep (to pre-process data) * Jupyter notebook (for deliverables) * Nilearn (to extract connectivity matrices) * Github (to version control and share the project)

Data

The data used is a single, anonymized, subject from the Prevent-AD. We used 2 fMRI visits. Data is not available for reproduction, but more details on the cohort can be found here

Deliverables

At the end of this project, we will have: - A Jupyter notebook detailing the failed first project. - A Jupyter notebook detailing the current fMRIPrep project. - A complete GitHub repo detailing the process.

Results

Github repo

For more details on the deliverables, please refer to the GitHub repo available here.

The tutorial was designed to be: 1) Easy to use, 2) Comprehensive and 3) Hopefully fun!

Conclusion and acknowledgement

In conclusion, I was able to learn a lot of new tools and gain a deeper understanding of fMRIPreprocessing. I was able to create a tutorial on using fMRIPrep that, hopefully, will also serve others learning this software!

I want to thank my instructor, Desiree Lussier, and all the BHS2020 team for allowing me to learn so much in a short span of a month!

See also these similar projects

An introduction to brain decoding and comparing the results of the seven different classifier on Haxby dataset

Brain decoding is a neuroscience field that concerned about different types of stimuli from information that has already been encoded and represented …

Discover this project

Diagnosing Schizophrenia from Brain Activity

Computational Psychiatry is growing trend that applies machine learning methods to psychological disorders. How well can we predict schizophrenia …

Discover this project

Visualization of functional connectivity from multiple neuroimaging modalities

In this project I employed some of the tools we learned at the Brainhack school to generate interactive figures to display funtional connectivity from …

Discover this project